ckb-next  v0.2.8 at branch master
ckb-next driver for corsair devices
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
kiss_fft.c
Go to the documentation of this file.
1 /*
2 Copyright (c) 2003-2010, Mark Borgerding
3 
4 All rights reserved.
5 
6 Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
7 
8  * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
9  * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
10  * Neither the author nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.
11 
12 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
13 */
14 
15 
16 #include "_kiss_fft_guts.h"
17 /* The guts header contains all the multiplication and addition macros that are defined for
18  fixed or floating point complex numbers. It also delares the kf_ internal functions.
19  */
20 
21 static void kf_bfly2(
22  kiss_fft_cpx * Fout,
23  const size_t fstride,
24  const kiss_fft_cfg st,
25  int m
26  )
27 {
28  kiss_fft_cpx * Fout2;
29  kiss_fft_cpx * tw1 = st->twiddles;
30  kiss_fft_cpx t;
31  Fout2 = Fout + m;
32  do{
33  C_FIXDIV(*Fout,2); C_FIXDIV(*Fout2,2);
34 
35  C_MUL (t, *Fout2 , *tw1);
36  tw1 += fstride;
37  C_SUB( *Fout2 , *Fout , t );
38  C_ADDTO( *Fout , t );
39  ++Fout2;
40  ++Fout;
41  }while (--m);
42 }
43 
44 static void kf_bfly4(
45  kiss_fft_cpx * Fout,
46  const size_t fstride,
47  const kiss_fft_cfg st,
48  const size_t m
49  )
50 {
51  kiss_fft_cpx *tw1,*tw2,*tw3;
52  kiss_fft_cpx scratch[6];
53  size_t k=m;
54  const size_t m2=2*m;
55  const size_t m3=3*m;
56 
57 
58  tw3 = tw2 = tw1 = st->twiddles;
59 
60  do {
61  C_FIXDIV(*Fout,4); C_FIXDIV(Fout[m],4); C_FIXDIV(Fout[m2],4); C_FIXDIV(Fout[m3],4);
62 
63  C_MUL(scratch[0],Fout[m] , *tw1 );
64  C_MUL(scratch[1],Fout[m2] , *tw2 );
65  C_MUL(scratch[2],Fout[m3] , *tw3 );
66 
67  C_SUB( scratch[5] , *Fout, scratch[1] );
68  C_ADDTO(*Fout, scratch[1]);
69  C_ADD( scratch[3] , scratch[0] , scratch[2] );
70  C_SUB( scratch[4] , scratch[0] , scratch[2] );
71  C_SUB( Fout[m2], *Fout, scratch[3] );
72  tw1 += fstride;
73  tw2 += fstride*2;
74  tw3 += fstride*3;
75  C_ADDTO( *Fout , scratch[3] );
76 
77  if(st->inverse) {
78  Fout[m].r = scratch[5].r - scratch[4].i;
79  Fout[m].i = scratch[5].i + scratch[4].r;
80  Fout[m3].r = scratch[5].r + scratch[4].i;
81  Fout[m3].i = scratch[5].i - scratch[4].r;
82  }else{
83  Fout[m].r = scratch[5].r + scratch[4].i;
84  Fout[m].i = scratch[5].i - scratch[4].r;
85  Fout[m3].r = scratch[5].r - scratch[4].i;
86  Fout[m3].i = scratch[5].i + scratch[4].r;
87  }
88  ++Fout;
89  }while(--k);
90 }
91 
92 static void kf_bfly3(
93  kiss_fft_cpx * Fout,
94  const size_t fstride,
95  const kiss_fft_cfg st,
96  size_t m
97  )
98 {
99  size_t k=m;
100  const size_t m2 = 2*m;
101  kiss_fft_cpx *tw1,*tw2;
102  kiss_fft_cpx scratch[5];
103  kiss_fft_cpx epi3;
104  epi3 = st->twiddles[fstride*m];
105 
106  tw1=tw2=st->twiddles;
107 
108  do{
109  C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3);
110 
111  C_MUL(scratch[1],Fout[m] , *tw1);
112  C_MUL(scratch[2],Fout[m2] , *tw2);
113 
114  C_ADD(scratch[3],scratch[1],scratch[2]);
115  C_SUB(scratch[0],scratch[1],scratch[2]);
116  tw1 += fstride;
117  tw2 += fstride*2;
118 
119  Fout[m].r = Fout->r - HALF_OF(scratch[3].r);
120  Fout[m].i = Fout->i - HALF_OF(scratch[3].i);
121 
122  C_MULBYSCALAR( scratch[0] , epi3.i );
123 
124  C_ADDTO(*Fout,scratch[3]);
125 
126  Fout[m2].r = Fout[m].r + scratch[0].i;
127  Fout[m2].i = Fout[m].i - scratch[0].r;
128 
129  Fout[m].r -= scratch[0].i;
130  Fout[m].i += scratch[0].r;
131 
132  ++Fout;
133  }while(--k);
134 }
135 
136 static void kf_bfly5(
137  kiss_fft_cpx * Fout,
138  const size_t fstride,
139  const kiss_fft_cfg st,
140  int m
141  )
142 {
143  kiss_fft_cpx *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
144  int u;
145  kiss_fft_cpx scratch[13];
146  kiss_fft_cpx * twiddles = st->twiddles;
147  kiss_fft_cpx *tw;
148  kiss_fft_cpx ya,yb;
149  ya = twiddles[fstride*m];
150  yb = twiddles[fstride*2*m];
151 
152  Fout0=Fout;
153  Fout1=Fout0+m;
154  Fout2=Fout0+2*m;
155  Fout3=Fout0+3*m;
156  Fout4=Fout0+4*m;
157 
158  tw=st->twiddles;
159  for ( u=0; u<m; ++u ) {
160  C_FIXDIV( *Fout0,5); C_FIXDIV( *Fout1,5); C_FIXDIV( *Fout2,5); C_FIXDIV( *Fout3,5); C_FIXDIV( *Fout4,5);
161  scratch[0] = *Fout0;
162 
163  C_MUL(scratch[1] ,*Fout1, tw[u*fstride]);
164  C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]);
165  C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]);
166  C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]);
167 
168  C_ADD( scratch[7],scratch[1],scratch[4]);
169  C_SUB( scratch[10],scratch[1],scratch[4]);
170  C_ADD( scratch[8],scratch[2],scratch[3]);
171  C_SUB( scratch[9],scratch[2],scratch[3]);
172 
173  Fout0->r += scratch[7].r + scratch[8].r;
174  Fout0->i += scratch[7].i + scratch[8].i;
175 
176  scratch[5].r = scratch[0].r + S_MUL(scratch[7].r,ya.r) + S_MUL(scratch[8].r,yb.r);
177  scratch[5].i = scratch[0].i + S_MUL(scratch[7].i,ya.r) + S_MUL(scratch[8].i,yb.r);
178 
179  scratch[6].r = S_MUL(scratch[10].i,ya.i) + S_MUL(scratch[9].i,yb.i);
180  scratch[6].i = -S_MUL(scratch[10].r,ya.i) - S_MUL(scratch[9].r,yb.i);
181 
182  C_SUB(*Fout1,scratch[5],scratch[6]);
183  C_ADD(*Fout4,scratch[5],scratch[6]);
184 
185  scratch[11].r = scratch[0].r + S_MUL(scratch[7].r,yb.r) + S_MUL(scratch[8].r,ya.r);
186  scratch[11].i = scratch[0].i + S_MUL(scratch[7].i,yb.r) + S_MUL(scratch[8].i,ya.r);
187  scratch[12].r = - S_MUL(scratch[10].i,yb.i) + S_MUL(scratch[9].i,ya.i);
188  scratch[12].i = S_MUL(scratch[10].r,yb.i) - S_MUL(scratch[9].r,ya.i);
189 
190  C_ADD(*Fout2,scratch[11],scratch[12]);
191  C_SUB(*Fout3,scratch[11],scratch[12]);
192 
193  ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
194  }
195 }
196 
197 /* perform the butterfly for one stage of a mixed radix FFT */
198 static void kf_bfly_generic(
199  kiss_fft_cpx * Fout,
200  const size_t fstride,
201  const kiss_fft_cfg st,
202  int m,
203  int p
204  )
205 {
206  int u,k,q1,q;
207  kiss_fft_cpx * twiddles = st->twiddles;
208  kiss_fft_cpx t;
209  int Norig = st->nfft;
210 
211  kiss_fft_cpx * scratch = (kiss_fft_cpx*)KISS_FFT_TMP_ALLOC(sizeof(kiss_fft_cpx)*p);
212 
213  for ( u=0; u<m; ++u ) {
214  k=u;
215  for ( q1=0 ; q1<p ; ++q1 ) {
216  scratch[q1] = Fout[ k ];
217  C_FIXDIV(scratch[q1],p);
218  k += m;
219  }
220 
221  k=u;
222  for ( q1=0 ; q1<p ; ++q1 ) {
223  int twidx=0;
224  Fout[ k ] = scratch[0];
225  for (q=1;q<p;++q ) {
226  twidx += fstride * k;
227  if (twidx>=Norig) twidx-=Norig;
228  C_MUL(t,scratch[q] , twiddles[twidx] );
229  C_ADDTO( Fout[ k ] ,t);
230  }
231  k += m;
232  }
233  }
234  KISS_FFT_TMP_FREE(scratch);
235 }
236 
237 static
238 void kf_work(
239  kiss_fft_cpx * Fout,
240  const kiss_fft_cpx * f,
241  const size_t fstride,
242  int in_stride,
243  int * factors,
244  const kiss_fft_cfg st
245  )
246 {
247  kiss_fft_cpx * Fout_beg=Fout;
248  const int p=*factors++; /* the radix */
249  const int m=*factors++; /* stage's fft length/p */
250  const kiss_fft_cpx * Fout_end = Fout + p*m;
251 
252 #ifdef _OPENMP
253  // use openmp extensions at the
254  // top-level (not recursive)
255  if (fstride==1 && p<=5)
256  {
257  int k;
258 
259  // execute the p different work units in different threads
260 # pragma omp parallel for
261  for (k=0;k<p;++k)
262  kf_work( Fout +k*m, f+ fstride*in_stride*k,fstride*p,in_stride,factors,st);
263  // all threads have joined by this point
264 
265  switch (p) {
266  case 2: kf_bfly2(Fout,fstride,st,m); break;
267  case 3: kf_bfly3(Fout,fstride,st,m); break;
268  case 4: kf_bfly4(Fout,fstride,st,m); break;
269  case 5: kf_bfly5(Fout,fstride,st,m); break;
270  default: kf_bfly_generic(Fout,fstride,st,m,p); break;
271  }
272  return;
273  }
274 #endif
275 
276  if (m==1) {
277  do{
278  *Fout = *f;
279  f += fstride*in_stride;
280  }while(++Fout != Fout_end );
281  }else{
282  do{
283  // recursive call:
284  // DFT of size m*p performed by doing
285  // p instances of smaller DFTs of size m,
286  // each one takes a decimated version of the input
287  kf_work( Fout , f, fstride*p, in_stride, factors,st);
288  f += fstride*in_stride;
289  }while( (Fout += m) != Fout_end );
290  }
291 
292  Fout=Fout_beg;
293 
294  // recombine the p smaller DFTs
295  switch (p) {
296  case 2: kf_bfly2(Fout,fstride,st,m); break;
297  case 3: kf_bfly3(Fout,fstride,st,m); break;
298  case 4: kf_bfly4(Fout,fstride,st,m); break;
299  case 5: kf_bfly5(Fout,fstride,st,m); break;
300  default: kf_bfly_generic(Fout,fstride,st,m,p); break;
301  }
302 }
303 
304 /* facbuf is populated by p1,m1,p2,m2, ...
305  where
306  p[i] * m[i] = m[i-1]
307  m0 = n */
308 static
309 void kf_factor(int n,int * facbuf)
310 {
311  int p=4;
312  double floor_sqrt;
313  floor_sqrt = floor( sqrt((double)n) );
314 
315  /*factor out powers of 4, powers of 2, then any remaining primes */
316  do {
317  while (n % p) {
318  switch (p) {
319  case 4: p = 2; break;
320  case 2: p = 3; break;
321  default: p += 2; break;
322  }
323  if (p > floor_sqrt)
324  p = n; /* no more factors, skip to end */
325  }
326  n /= p;
327  *facbuf++ = p;
328  *facbuf++ = n;
329  } while (n > 1);
330 }
331 
332 /*
333  *
334  * User-callable function to allocate all necessary storage space for the fft.
335  *
336  * The return value is a contiguous block of memory, allocated with malloc. As such,
337  * It can be freed with free(), rather than a kiss_fft-specific function.
338  * */
339 kiss_fft_cfg kiss_fft_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem )
340 {
341  kiss_fft_cfg st=NULL;
342  size_t memneeded = sizeof(struct kiss_fft_state)
343  + sizeof(kiss_fft_cpx)*(nfft-1); /* twiddle factors*/
344 
345  if ( lenmem==NULL ) {
346  st = ( kiss_fft_cfg)KISS_FFT_MALLOC( memneeded );
347  }else{
348  if (mem != NULL && *lenmem >= memneeded)
349  st = (kiss_fft_cfg)mem;
350  *lenmem = memneeded;
351  }
352  if (st) {
353  int i;
354  st->nfft=nfft;
355  st->inverse = inverse_fft;
356 
357  for (i=0;i<nfft;++i) {
358  const double pi=3.141592653589793238462643383279502884197169399375105820974944;
359  double phase = -2*pi*i / nfft;
360  if (st->inverse)
361  phase *= -1;
362  kf_cexp(st->twiddles+i, phase );
363  }
364 
365  kf_factor(nfft,st->factors);
366  }
367  return st;
368 }
369 
370 
371 void kiss_fft_stride(kiss_fft_cfg st,const kiss_fft_cpx *fin,kiss_fft_cpx *fout,int in_stride)
372 {
373  if (fin == fout) {
374  //NOTE: this is not really an in-place FFT algorithm.
375  //It just performs an out-of-place FFT into a temp buffer
376  kiss_fft_cpx * tmpbuf = (kiss_fft_cpx*)KISS_FFT_TMP_ALLOC( sizeof(kiss_fft_cpx)*st->nfft);
377  kf_work(tmpbuf,fin,1,in_stride, st->factors,st);
378  memcpy(fout,tmpbuf,sizeof(kiss_fft_cpx)*st->nfft);
379  KISS_FFT_TMP_FREE(tmpbuf);
380  }else{
381  kf_work( fout, fin, 1,in_stride, st->factors,st );
382  }
383 }
384 
385 void kiss_fft(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout)
386 {
387  kiss_fft_stride(cfg,fin,fout,1);
388 }
389 
390 
392 {
393  // nothing needed any more
394 }
395 
397 {
398  while(1) {
399  int m=n;
400  while ( (m%2) == 0 ) m/=2;
401  while ( (m%3) == 0 ) m/=3;
402  while ( (m%5) == 0 ) m/=5;
403  if (m<=1)
404  break; /* n is completely factorable by twos, threes, and fives */
405  n++;
406  }
407  return n;
408 }
#define KISS_FFT_TMP_ALLOC(nbytes)
#define kf_cexp(x, phase)
#define S_MUL(a, b)
kiss_fft_cpx twiddles[1]
#define KISS_FFT_TMP_FREE(ptr)
void kiss_fft_stride(kiss_fft_cfg st, const kiss_fft_cpx *fin, kiss_fft_cpx *fout, int in_stride)
Definition: kiss_fft.c:371
#define C_MUL(m, a, b)
#define C_SUB(res, a, b)
#define C_ADD(res, a, b)
float i
Definition: kiss_fft.h:53
static void kf_work(kiss_fft_cpx *Fout, const kiss_fft_cpx *f, const size_t fstride, int in_stride, int *factors, const kiss_fft_cfg st)
Definition: kiss_fft.c:238
static void kf_bfly2(kiss_fft_cpx *Fout, const size_t fstride, const kiss_fft_cfg st, int m)
Definition: kiss_fft.c:21
struct kiss_fft_state * kiss_fft_cfg
Definition: kiss_fft.h:56
double phase
Definition: main.c:48
void kiss_fft_cleanup(void)
Definition: kiss_fft.c:391
static void kf_bfly4(kiss_fft_cpx *Fout, const size_t fstride, const kiss_fft_cfg st, const size_t m)
Definition: kiss_fft.c:44
#define C_FIXDIV(c, div)
static void kf_factor(int n, int *facbuf)
Definition: kiss_fft.c:309
kiss_fft_cfg kiss_fft_alloc(int nfft, int inverse_fft, void *mem, size_t *lenmem)
Definition: kiss_fft.c:339
float r
Definition: kiss_fft.h:52
#define HALF_OF(x)
#define C_ADDTO(res, a)
#define C_MULBYSCALAR(c, s)
void kiss_fft(kiss_fft_cfg cfg, const kiss_fft_cpx *fin, kiss_fft_cpx *fout)
Definition: kiss_fft.c:385
int factors[2 *32]
static void kf_bfly5(kiss_fft_cpx *Fout, const size_t fstride, const kiss_fft_cfg st, int m)
Definition: kiss_fft.c:136
static void kf_bfly3(kiss_fft_cpx *Fout, const size_t fstride, const kiss_fft_cfg st, size_t m)
Definition: kiss_fft.c:92
int kiss_fft_next_fast_size(int n)
Definition: kiss_fft.c:396
static void kf_bfly_generic(kiss_fft_cpx *Fout, const size_t fstride, const kiss_fft_cfg st, int m, int p)
Definition: kiss_fft.c:198
#define KISS_FFT_MALLOC
Definition: kiss_fft.h:32